

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcm⁵s²U in tRNA

Tony Karlsborn^a, Hasan Tükenmez^a, Changchun Chen^b, Anders S. Byström^{a,*}

- ^a Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- ^b Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK

ARTICLE INFO

Article history: Received 13 October 2014 Available online 30 October 2014

Keywords:
Familial dysautonomia (FD)
Elongator complex
IKBKAP
ELP1
ERNA modification
5-Methoxycarbonylmethyl-2-thiouridine
(mcm⁵s²U)

ABSTRACT

Familial dysautonomia (FD) is a recessive neurodegenerative genetic disease. FD is caused by a mutation in the *IKBKAP* gene resulting in a splicing defect and reduced levels of full length IKAP protein. IKAP homologues can be found in all eukaryotes and are part of a conserved six subunit protein complex, Elongator complex. Inactivation of any Elongator subunit gene in multicellular organisms cause a wide range of phenotypes, suggesting that Elongator has a pivotal role in several cellular processes. In yeast, there is convincing evidence that the main role of Elongator complex is in formation of modified wobble uridine nucleosides in tRNA and that their absence will influence translational efficiency. To date, no study has explored the possibility that FD patients display defects in formation of modified wobble uridine nucleosides as a consequence of reduced IKAP levels. In this study, we show that brain tissue and fibroblast cell lines from FD patients have reduced levels of the wobble uridine nucleoside 5-methoxycarbonylmethyl-2-thiouridine (mcm⁵s²U). Our findings indicate that FD could be caused by inefficient translation due to lower levels of wobble uridine nucleosides.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Familial dysautonomia (FD), initially called Riley-Day syndrome is a neurodegenerative autosomal recessive genetic disorder primarily found amongst the Ashkenazi Jewish population [1,2]. FD patients display a variety of clinical features such as cardiovascular dysfunction, decreased pain and temperature sensation, blood pressure variability, vomiting crises, lack of overflow tears and increased sweating [3,4]. Nearly all FD patients have a mutation in the donor splice site of intron 20 of the *IKBKAP* gene which leads to aberrant splicing. The missplicing results in skipping of exon 20 in a tissue specific manner and consequently reduced levels of the full length IKAP protein [5–8].

The IKAP protein homologue Elp1p has been extensively studied in the yeast *Saccharomyces cerevisiae*. The Elp1p is part of a six subunit protein complex Elp1p-Elp6p and this complex was initially described as a histone acetyltransferase (HAT) that associates with the hyperphosphorylated elongating form of RNA

polymerase II (Pol II) [9]. Therefore the complex was named Elongator complex [9-12]. The HAT activity of Elongator complex reside in the Elp3p subunit since in vitro this subunit transfer acetyl groups from acetyl-CoA to histones [13,14]. Consistent with a role in transcription, null mutants of genes encoding Elongator subunits results in defects in Pol II transcription [9,10,13-15]. In addition to defects in Pol II transcription, deletions of genes encoding Elongator subunits in yeast show multiple phenotypes including defects in DNA repair, telomeric gene silencing, exocytosis and formation of the 5-carbamoylmethyluridine (ncm⁵U), 5-methoxycarbonylmethyluridine (mcm⁵U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm⁵s²U) nucleosides at wobble position in tRNAs [16–18]. It was controversial whether Elongator complex is involved in multiple cellular processes or if it participate in one key process influencing multiple downstream cellular processes. In yeast, there is convincing evidence that the primary role of Elongator complex is in formation of the ncm⁵ and mcm⁵ side chains on wobble uridines in tRNA [18,19]. In Elongator mutants, overexpression of various combinations of $tRNA_{s^2UUU}^{Slu}$, $tRNA_{s^2UUU}^{Gln}$ and $tRNA_{s^2UUU}^{Glu}$ which in wild type have the mcm^5s^2U nucleoside restored all defects mentioned above but not the defect in formation of the ncm⁵U, mcm⁵U and mcm⁵s²U nucleosides [19,20]. Presence of ncm⁵U, mcm⁵U and mcm⁵s²U nucleosides are important for proper decoding of A- and G-ending codons in

Abbreviations: cm^5U , 5-carboxymethyluridine; ncm^5U , 5-carbamoylmethyluridine; mcm^5U , 5-methoxycarbonylmethyluridine; mcm^5s^2U , 5-methoxycarbonylmethyl-2-thiouridine.

^{*} Corresponding author. Fax: +46 90 77 26 30. E-mail address: Anders.Bystrom@molbiol.umu.se (A.S. Byström).

mRNAs [21–24]. Thus, elevated levels of hypomodified $tRNA_{s^2UUU}^{Lys}$ $tRNA_{s^2UUG}^{Gln}$ and $tRNA_{s^2UUC}^{Glu}$ most likely compensate for inefficient codon/anticodon interaction during translation due to the absence of modifications at wobble position. Likely translational targets are mRNAs enriched in these codons or having these codons in a certain context. This was recently verified for the $cdr2^+$ gene of $Schizosaccharomyces\ pombe$ where changes of the Elongator tRNA modification dependent AAA lysine codons to Elongator independent AAG lysine codons significantly improved expression of the protein encoded by the modified $cdr2^+$ gene [23].

Elongator complex is conserved in multicellular eukaryotes and six subunit protein complexes have been purified from humans and plants [12,25–27]. Mutations in the *ELP1/IKBKAP* gene homologues of the plant *Arabidopsis thaliana*, the worm *Caenorhabditis elegans* and mouse *Mus musculus* causes defects in formation of wobble uridine modifications [28–30]. As in yeast, depletion of Elongator subunits in multicellular organisms show pleiotropic phenotypes implicating a role in very many cellular processes [29–39]. Phenotypes observed in fibroblasts derived from FD patients are reduced histone H3 acetylation and reduced Pol II transcription of several genes encoding proteins required for proper cell motility [25,31]. However, in FD fibroblasts it is unknown if reduced histone H3 acetylation could be a consequence of reduced amounts of the mcm⁵s²U nucleoside at wobble position in tRNA.

In yeast, the Elongator complex is required for formation of the first intermediate, likely to be 5-carboxymethyluridine (cm⁵U), in formation of the ncm⁵U, mcm⁵U and mcm⁵s²U nucleosides at wobble position in tRNA [40-44]. In essentially all archaea, homologues to the Elp3 protein are found but not the other subunits of the Elongator complex [45,46]. Recently, the archaea Methanocaldococcus infernus Elp3 protein produced in Escherichia coli was shown to catalyse the formation of cm⁵U by transfer of an acetyl radical originating from acetyl-CoA in the presence of S-adenosylmethionine (SAM) [46]. Thus, this reaction utilizes both the HAT and Radical SAM domains found in Elp3p. In mammals, a fraction of the Elongator complex dependent mcm⁵U wobble nucleoside is further converted into the diastereomeric modifications (R)-(S)-5-methoxycarbonylhydroxymethyluridine (mchm⁵U) [47,48] whereas in plants and worms the (S)-mchm⁵U nucleoside is found [48-50].

In this study, we analyzed the levels of the mcm⁵s²U nucleoside in brain tissue and fibroblast cell lines derived from healthy individuals and FD patients. Our results show that FD patients have reduced levels of the mcm⁵s²U nucleoside in tRNA.

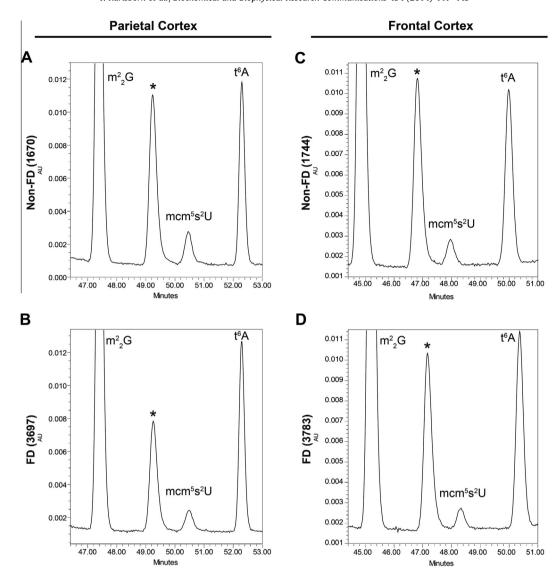
2. Materials and methods

2.1. Tissue specimens, cell lines and media

Tissue samples were from the parietal- or frontal-cortex of cerebrum from patients with UMB#: M3697M (FD), M3783M (FD), 1670 (non-FD), 880 (non-FD), 1744 (non-FD) and 5120 (non-FD) were from NICHD Brain and tissue bank for developmental disorders. Fibroblasts GM03348 (non-FD), GM04959 (FD), AG08498 (non-FD) and GM04899 (FD) were from Coriell Cell Repositories. Fibroblasts were grown in DMEM Glutamax-I media (Gibco) with 15% FBS (Sigma-Aldrich), sodium pyruvate (Gibco), MEM nonessential amino acids (Gibco) and Penicillin-Streptomycin (Gibco) or Antibiotic-Antimycotic (Gibco) at 37 °C in a humidified atmosphere with 5% CO₂.

2.2. tRNA isolation and analysis by HPLC

Approximately 1 g of tissue from the parietal- or frontal-cortex of cerebrum was cut into small pieces. The tissue was


homogenized by grinding in the presence of liquid nitrogen. The homogenized tissue was dissolved in 7 mL TRIzol (Life Technologies) and samples were vortexed for 20 min at room temperature (RT). Samples were centrifuged for 20 min at 12,000g and the supernatant was mixed with an equal volume of chloroform and vortexed 5 min at RT. Samples were subjected to centrifugation at 12,000g for 20 min and the aqueous phase was mixed with 5 mL of water saturated phenol and 0.5 mL of chloroform. Samples were vortexed for 5 min at RT and centrifuged for 20 min at 12,000g. Total RNA was precipitated with 0.7 volumes of isopropanol, centrifuged at 12,000g for 20 min and separated from high molecular weight RNA as earlier described [20]. Fibroblasts were collected at 90-95% confluency from at least 14 culture flasks with the bottom area of 75 cm². Fibroblasts were detached using Trypsin and collected by centrifugation at 390g for 5 min. Total tRNA was prepared as earlier described [20] using PBS instead of 0.9% NaCl to resuspend harvested cells, tRNA was digested to nucleosides using nuclease P1 (Sigma-Aldrich) and bacterial alkaline phosphatase (Sigma-Aldrich) and analyzed as earlier described [51].

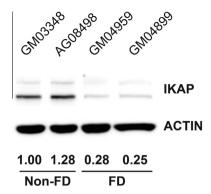
2.3. Western blot

Fibroblasts were grown to 80-95% confluency. Cells were scraped off in the presence of RIPA buffer (150 mM sodium chloride, 1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris pH 8.0) supplemented with cOmplete Protease Inhibitor Cocktail Tablet (Roche). Cells were agitated for 30 min at 4 °C and centrifuged for 20 min at 12000 rpm at 4 °C. Proteins in the supernatant were separated on 7.5% SDS-PAGE and transferred to an Amersham™ Hybond ECL membrane (GE Healthcare). Membranes were incubated with antibodies in 5% non-fat dried milk in PBS. IKAP was detected using a monoclonal Anti-IKBKAP antibody (Sigma-Aldrich, 0.5 mg/ml, mouse, 1:200) and actin by anti-beta Actin antibody (Abcam, 1 mg/ml, mouse, 1:4000). Secondary antibody was a horseradish peroxidase-conjugated anti-mouse IgG antibody (GE Healthcare, 1:4000). Signals were detected using Amersham ECL Western blotting detection reagents (GE Healthcare). Signals were quantified using the ImageJ software.

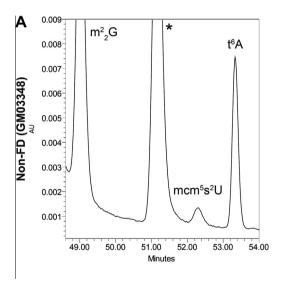
3. Results and discussion

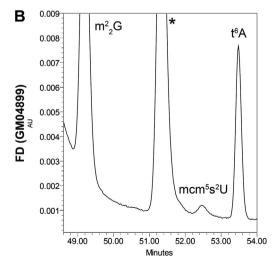
To investigate if FD patients show lower levels of the mcm⁵s²U nucleoside in tRNA we analyzed levels of this nucleoside in tissue derived from the parietal- and frontal-cortex of cerebrum of two FD patients and six non-FD individuals. Total tRNA was analysed by high-performance liquid chromatography (HPLC). Quantification of the mcm5s2U nucleoside levels revealed that tRNA extracted from FD brain tissue has 65–71% of the mcm⁵s²U nucleoside levels observed in tRNA from the non-FD brain tissue. (Fig. 1 and Table 1). Since we only had access to brain tissue from two deceased FD patients we decided to continue our work with fibroblast cells obtained from FD patients and non-FD individuals. To confirm that our FD fibroblasts had a reduction of the IKAP-protein we performed a Western blot using an IKAP-specific antibody (Fig. 2). The Western blot show a distinct reduction in levels of IKAP in the FD derived fibroblasts compared to fibroblasts derived from non-FD individuals. HPLC analysis of the mcm⁵s²U nucleoside in total tRNA extracted from non-FD and FD fibroblasts revealed that FD fibroblasts have 64% of the mcm⁵s²U nucleoside levels observed in the non-FD fibroblasts (Fig. 3 and Table 1). We also tried to analyze levels of the modified nucleoside ncm⁵U which is dependent on Elongator complex for its formation [18,28-30]. However, the amount of ncm⁵U could not be quantified by HPLC analysis due to co-migration with an unrelated peak (data not

Fig. 1. Brain tissue from familial dysautonomia (FD) patients show reduced levels of the mcm⁵s²U modified wobble nucleoside. HPLC analysis of modified tRNA nucleosides from parietal cortex. (A) Non-FD individual (1670). (B) FD patient (3697). HPLC analysis of modified tRNA nucleosides from the frontal cortex. (C) Non-FD individual (1744). (D) FD patient (3783). The part of the chromatogram between the retention times 46.5 and 53 min (A and B) and 44.5 and 51 min (C and D) are shown. Chromatograms are monitored at 254 nm. *Abbreviations*: (m²2G) N²,N²-dimethylguanosine; (mcm⁵s²U) 5-methoxycarbonylmethyl-2-thiouridine, (t⁶A) N⁶-threonylcarbamoyladenosine. Asterisk (*) indicates an unknown peak.


 Table 1

 Content of modified nucleosides in total tRNA isolated from brain tissue and fibroblast cell lines from familial dysautonomia (FD) patients and non-FD individuals.


Samples			Ψ	Cm	m^1G	m^2G	m_2^2G	mcm ⁵ s ² U	% of Non-FD
Parietal Cortex	Non-FD	1670	1.00	1.00	1.00	1.00	1.00	1.00	65%
	FD	3697	1.00	0.95	1.11	1.11	1.09	0.65	
Frontal Cortex	Non-FD	880	1.00	1.00	1.00	1.00	1.00	1.00	71%
		1744	1.00	1.12	0.96	0.98	0.99	1.00	
		5120	1.00	1.09	0.97	1.00	0.99	0.88	
	FD	3783	1.00	1.05	0.99	0.99	1.02	0.68	
Fibroblast	Non-FD	GM03348	1.00	1.00	1.00	1.00	1.00	1.00	64%
		AG08498	1.00	1.07	0.97	0.90	1.06	0.90	
	FD	GM04899	1.00	0.97	1.08	1.01	1.04	0.67	
		GM04959	1.00	1.06	1.03	0.87	1.06	0.54	


Pseudouridine (ψ) was used as an internal standard. The numbers are ratios of various modified nucleosides (modified nucleoside/ ψ) in total tRNA isolated from fibroblasts or brain tissue (parietal cortex and frontal cortex). In each set, levels of modified nucleosides from GM03348, 1670 and 880 were set to 1. Values for mcm⁵s²U are shown in bold. Percentage of mcm⁵s²U in FD relative to non-FD samples (% of non-FD) is calculated by the average value for FD derived samples divided by the average value from the non-FD samples in each set (Fibroblasts, Parietal cortex and Frontal cortex).

Abbreviations: (ψ) pseudouridine; (Cm) 2'-0-methylcytidine; (m¹G) 1-methylguanosine; (m²G) N^2 -methylguanosine; (m²G) N^2 -dimethylguanosine; (mcm⁵s²U) 5-methoxycarbonylmethyl-2-thiouridine.

Fig. 2. Fibroblasts from familial dysautonomia (FD) patients display reduced levels of the IKAP protein. Protein was extracted from fibroblasts derived from non-FD individuals (GM03348, AG08498) and FD patients (GM04899, GM04959). Levels of IKBKAP were determined by Western blot analysis with an IKBKAP specific antibody. Actin levels were used as loading control. Ratio IKAP/actin was set to 1.00 in GM03348 (non-FD) and other samples were normalized to GM03348.

Fig. 3. Fibroblasts derived from familial dysautonomia (FD) patients show reduced levels of the mcm 5 s 2 U modified wobble nucleoside. HPLC analysis of modified tRNA nucleosides from fibroblast cell lines. (A) Non-FD individual (GM03348). (B) FD patient (GM04899). The part of the chromatogram between the retention times 48.8 and 54 min are shown. Chromatograms are monitored at 254 mm. *Abbreviations*: (m 2 2G) N^2 , N^2 -dimethylguanosine; (mcm 5 s 2 U) 5-methoxycarbonylmethyl-2-thiouridine, (t 6 A) N^6 -threonylcarbamoyladenosine. Asterisk (*) indicates an unknown peak.

shown). To verify that the reduction in mcm⁵s²U levels were FD specific we compared levels of other modified nucleosides in total tRNA isolated from FD patients and non-FD individuals. We found that of the nucleosides analysed, only mcm⁵s²U was reduced in FD brain tissue as well as FD fibroblasts (Table 1). The reduction in mcm⁵s²U levels we observed is similar to the reduction of mcm⁵s²U observed in studies of yeast kti13 null mutants [52]. Strikingly, kti13 null mutants display similar but weaker phenotypes than Elongator null mutants [19,53]. These results suggest that partial loss of the modified wobble nucleosides in tRNA is sufficient to reduce translational efficiency causing multiple phenotypes. Furthermore, a study in C. elegans where the IKBKAP homologue ELPC-1 was inactivated cause defects in translation [29]. In addition, the same study observed that ELPC-1::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. Inactivation of the *elpc-1* gene causes a defect in salt chemotaxis learning, associated with posttranscriptional reduction of neuropeptide and decreased accumulation of acetylcholine in the synaptic cleft [29]. Thus in C. elegans a functional ELPC-1 is relevant for proper neurological function. Similarly, inefficient translation in nervous tissues of FD patients due to partial loss of the mcm⁵s²U nucleoside in tRNA may be the cause for the neurodegenerative nature of the disease.

In conclusion, we demonstrate that brain tissue and fibroblasts from FD patients show reduced levels of the mcm⁵s²U nucleoside at wobble position in tRNA. We found that brain tissue from FD patients has 65–71% of the mcm⁵s²U nucleoside levels observed in tRNA from non-FD brain tissue. Furthermore, fibroblasts from FD patients have 64% of the mcm⁵s²U nucleoside levels observed in the non-FD fibroblasts. These results suggest that lower levels of the IKAP protein due to aberrant splicing of *IKBKAP* cause reduced amounts of the mcm⁵s²U nucleoside in tRNA. A complete loss of modified wobble uridine nucleosides in FD patients was not expected as mice homozygous *ikbkap*^{-/-} knockouts are embryonic lethal [54]. Our results show that IKAP is required for formation of the mcm⁵s²U nucleoside at wobble position in tRNA implicating that FD may be the result of inefficient translation.

Acknowledgments

We thank Drs Marcus Johansson and Glenn Björk for comments on the manuscript. A.S.B. is supported by grants from the Swedish Cancer Foundation (13 0301), Swedish Research Council (621-2012-3576) and Karin and Harald Silvanders Foundation (223-2808-12).

References

- C. Maayan, E. Kaplan, S. Shachar, O. Peleg, S. Godfrey, Incidence of familial dysautonomia in Israel 1977–1981, Clin. Genet. 32 (1987) 106–108.
- [2] C.M. Riley, R.L. Day, et al., Central autonomic dysfunction with defective lacrimation; report of five cases, Pediatrics 3 (1949) 468–478.
- [3] F.B. Axelrod, Familial dysautonomia, Muscle Nerve 29 (2004) 352–363.
- [4] L. Norcliffe-Kaufmann, F.B. Axelrod, H. Kaufmann, Developmental abnormalities, blood pressure variability and renal disease in Riley Day syndrome, J. Hum. Hypertens. 27 (2013) 51–55.
- [5] S.A. Slaugenhaupt, A. Blumenfeld, S.P. Gill, M. Leyne, J. Mull, M.P. Cuajungco, C.B. Liebert, B. Chadwick, M. Idelson, L. Reznik, C. Robbins, I. Makalowska, M. Brownstein, D. Krappmann, C. Scheidereit, C. Maayan, F.B. Axelrod, J.F. Gusella, Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia, Am. J. Hum. Genet. 68 (2001) 598–605.
- [6] S.L. Anderson, R. Coli, I.W. Daly, E.A. Kichula, M.J. Rork, S.A. Volpi, J. Ekstein, B.Y. Rubin, Familial dysautonomia is caused by mutations of the IKAP gene, Am. J. Hum. Genet. 68 (2001) 753–758.
- [7] J. Dong, L. Edelmann, A.M. Bajwa, R. Kornreich, R.J. Desnick, Familial dysautonomia: detection of the IKBKAP IVS20(+6T → C) and R696P mutations and frequencies among Ashkenazi Jews, Am. J. Med. Genet. 110 (2002) 253–257.
- [8] M.P. Cuajungco, M. Leyne, J. Mull, S.P. Gill, W. Lu, D. Zagzag, F.B. Axelrod, C. Maayan, J.F. Gusella, S.A. Slaugenhaupt, Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia, Am. J. Hum. Genet. 72 (2003) 749–758.

- [9] G. Otero, J. Fellows, Y. Li, T. de Bizemont, A.M. Dirac, C.M. Gustafsson, H. Erdjument-Bromage, P. Tempst, J.Q. Svejstrup, Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation, Mol. Cell 3 (1999) 109–118.
- [10] N.J. Krogan, J.F. Greenblatt, Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae, Mol. Cell. Biol. 21 (2001) 8203–8212.
- [11] Y. Li, Y. Takagi, Y. Jiang, M. Tokunaga, H. Erdjument-Bromage, P. Tempst, R.D. Kornberg, A multiprotein complex that interacts with RNA polymerase II elongator, J. Biol. Chem. 276 (2001) 29628–29631.
- [12] G.S. Winkler, T.G. Petrakis, S. Ethelberg, M. Tokunaga, H. Erdjument-Bromage, P. Tempst, J.Q. Svejstrup, RNA polymerase II elongator holoenzyme is composed of two discrete subcomplexes, J. Biol. Chem. 276 (2001) 32743– 32749
- [13] B.O. Wittschieben, G. Otero, T. de Bizemont, J. Fellows, H. Erdjument-Bromage, R. Ohba, Y. Li, C.D. Allis, P. Tempst, J.Q. Svejstrup, A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme, Mol. Cell 4 (1999) 123–128.
- [14] B.O. Wittschieben, J. Fellows, W. Du, D.J. Stillman, J.Q. Svejstrup, Overlapping roles for the histone acetyltransferase activities of SAGA and elongator in vivo, EMBO J. 19 (2000) 3060–3068.
- [15] G.S. Winkler, A. Kristjuhan, H. Erdjument-Bromage, P. Tempst, J.Q. Svejstrup, Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo, Proc. Natl. Acad. Sci. USA 99 (2002) 3517–3522.
- [16] Q. Li, A.M. Fazly, H. Zhou, S. Huang, Z. Zhang, B. Stillman, The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents, PLoS Genet. 5 (2009) e1000684.
- [17] P.B. Rahl, C.Z. Chen, R.N. Collins, Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation, Mol. Cell 17 (2005) 841–853.
- [18] B. Huang, M.J.O. Johansson, A.S. Byström, An early step in wobble uridine tRNA modification requires the Elongator complex, RNA 11 (2005) 424–436.
- [19] A. Esberg, B. Huang, M.J. Johansson, A.S. Byström, Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis, Mol. Cell 24 (2006) 139–148.
- [20] C. Chen, B. Huang, M. Eliasson, P. Ryden, A.S. Byström, Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification, PLoS Genet. 7 (2011) e1002258.
- [21] M.J.O. Johansson, A. Esberg, B. Huang, G.R. Björk, A.S. Byström, Eukaryotic wobble uridine modifications promote a functionally redundant decoding system, Mol. Cell. Biol. 28 (2008) 3301–3312.
- [22] F.A. Vendeix, F.V.t. Murphy, W.A. Cantara, G. Leszczynska, E.M. Gustilo, B. Sproat, A. Malkiewicz, P.F. Agris, Human tRNA(Lys3)(UUU) is pre-structured by natural modifications for cognate and wobble codon binding through ketoenol tautomerism, J. Mol. Biol. 416 (2012) 467–485.
- [23] F. Bauer, A. Matsuyama, J. Candiracci, M. Dieu, J. Scheliga, D.A. Wolf, M. Yoshida, D. Hermand, Translational control of cell division by Elongator, Cell Rep. 1 (2012) 424–433.
- [24] P.C. Durant, A.C. Bajji, M. Sundaram, R.K. Kumar, D.R. Davis, Structural effects of hypermodified nucleosides in the *Escherichia coli* and human tRNALys anticodon loop: the effect of nucleosides s2U, mcm5U, mcm5s2U, mnm5s2U, t6A, and ms2t6A, Biochemistry 44 (2005) 8078–8089.
- [25] N.A. Hawkes, G. Otero, G.S. Winkler, N. Marshall, M.E. Dahmus, D. Krappmann, C. Scheidereit, C.L. Thomas, G. Schiavo, H. Erdjument-Bromage, P. Tempst, J.Q. Svejstrup, Purification and characterization of the human elongator complex, J. Biol. Chem. 277 (2002) 3047–3052.
- [26] P. Close, M. Gillard, A. Ladang, Z. Jiang, J. Papuga, N. Hawkes, L. Nguyen, J.P. Chapelle, F. Bouillenne, J. Svejstrup, M. Fillet, A. Chariot, DERP6 (ELP5) and C30RF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator, J. Biol. Chem. 287 (2012) 32535–32545.
- [27] H. Nelissen, S. De Groeve, D. Fleury, P. Neyt, L. Bruno, M.B. Bitonti, F. Vandenbussche, D. Van der Straeten, T. Yamaguchi, H. Tsukaya, E. Witters, G. De Jaeger, A. Houben, M. Van Lijsebettens, Plant Elongator regulates auxin-related genes during RNA polymerase II transcription elongation, Proc. Natl. Acad. Sci. USA 107 (2010) 1678–1683.
- [28] C. Mehlgarten, D. Jablonowski, U. Wrackmeyer, S. Tschitschmann, D. Sondermann, G. Jager, Z. Gong, A.S. Byström, R. Schaffrath, K.D. Breunig, Elongator function in tRNA wobble uridine modification is conserved between yeast and plants, Mol. Microbiol. 76 (2010) 1082–1094.
- [29] C. Chen, S. Tuck, A.S. Byström, Defects in tRNA modification associated with neurological and developmental dysfunctions in *Caenorhabditis elegans* elongator mutants, PLoS Genet. 5 (2009) e1000561.
- [30] F.J. Lin, L. Shen, C.W. Jang, P.O. Falnes, Y. Zhang, Ikbkap/Elp1 deficiency causes male infertility by disrupting meiotic progression, PLoS Genet. 9 (2013) e1003516
- [31] P. Close, N. Hawkes, I. Cornez, C. Creppe, C.A. Lambert, B. Rogister, U. Siebenlist, M.P. Merville, S.A. Slaugenhaupt, V. Bours, J.Q. Svejstrup, A. Chariot, Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia, Mol. Cell 22 (2006) 521–531.
- [32] Y. Okada, K. Yamagata, K. Hong, T. Wakayama, Y. Zhang, A role for the elongator complex in zygotic paternal genome demethylation, Nature 463 (2010) 554–558.

- [33] J. Walker, S.Y. Kwon, P. Badenhorst, P. East, H. McNeill, J.Q. Svejstrup, Role of elongator subunit Elp3 in Drosophila melanogaster larval development and immunity, Genetics 187 (2011) 1067–1075.
- [34] N. Singh, M.T. Lorbeck, A. Zervos, J. Zimmerman, F. Elefant, The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila, J. Neurochem. 115 (2010) 493–504.
- [35] K. Miskiewicz, L.E. Jose, A. Bento-Abreu, M. Fislage, I. Taes, J. Kasprowicz, J. Swerts, S. Sigrist, W. Versees, W. Robberecht, P. Verstreken, ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot, Neuron 72 (2011) 776–788.
- [36] C. Creppe, L. Malinouskaya, M.L. Volvert, M. Gillard, P. Close, O. Malaise, S. Laguesse, I. Cornez, S. Rahmouni, S. Ormenese, S. Belachew, B. Malgrange, J.P. Chapelle, U. Siebenlist, G. Moonen, A. Chariot, L. Nguyen, Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin, Cell 136 (2009) 551–564.
- [37] J.A. Solinger, R. Paolinelli, H. Kloss, F.B. Scorza, S. Marchesi, U. Sauder, D. Mitsushima, F. Capuani, S.R. Sturzenbaum, G. Cassata, The Caenorhabditis elegans elongator complex regulates neuronal alpha-tubulin acetylation, PLoS Genet. 6 (2010) e1000820.
- [38] H. Nelissen, D. Fleury, L. Bruno, P. Robles, L. De Veylder, J. Traas, J.L. Micol, M. Van Montagu, D. Inze, M. Van Lijsebettens, The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth, Proc. Natl. Acad. Sci. USA 102 (2005) 7754–7759.
- [39] L.D. Johansen, T. Naumanen, A. Knudsen, N. Westerlund, I. Gromova, M. Junttila, C. Nielsen, T. Bottzauw, A. Tolkovsky, J. Westermarck, E.T. Coffey, M. Jaattela, T. Kallunki, IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration, J. Cell Sci. 121 (2008) 854–864.
- [40] T.D. Tumaitis, B.G. Lane, Differential labelling of the carboxymethyl and methyl substituents of 5-carboxymethyluridine methyl ester, a trace nucleoside constituent of yeast transfer RNA, Biochim. Biophys. Acta 224 (1970) 391–403.
- [41] H.R. Kalhor, S. Clarke, Novel methyltransferase for modified uridine residues at the wobble position of tRNA, Mol. Cell. Biol. 23 (2003) 9283–9292.
- [42] M.H. Mazauric, L. Dirick, S.K. Purushothaman, G.R. Bjork, B. Lapeyre, Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast, J. Biol. Chem. 285 (2010) 18505–18515.
- [43] L. Songe-Moller, E. van den Born, V. Leihne, C.B. Vagbo, T. Kristoffersen, H.E. Krokan, F. Kirpekar, P.O. Falnes, A. Klungland, Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding, Mol. Cell. Biol. 30 (2010) 1814–1827.
- [44] C. Chen, B. Huang, J.T. Anderson, A.S. Byström, Unexpected accumulation of ncm(5)U and ncm(5)S(2) (U) in a trm9 mutant suggests an additional step in the synthesis of mcm(5)U and mcm(5)S(2)U, PLoS ONE 6 (2011) e20783.
- [45] C. Paraskevopoulou, S.A. Fairhurst, D.J. Lowe, P. Brick, S. Onesti, The Elongator subunit Elp3 contains a Fe4S4 cluster and binds S-adenosylmethionine, Mol. Microbiol. 59 (2006) 795–806.
- [46] K. Selvadurai, P. Wang, J. Seimetz, R.H. Huang, Archaeal Elp3 catalyzes tRNA wobble uridine modification at C5 via a radical mechanism, Nat. Chem. Biol. (2014).
- [47] Y. Fu, Q. Dai, W. Zhang, J. Ren, T. Pan, C. He, The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA, Angew. Chem. Int. Ed. Engl. 49 (2010) 8885–8888.
- [48] E. van den Born, C.B. Vagbo, L. Songe-Moller, V. Leihne, G.F. Lien, G. Leszczynska, A. Malkiewicz, H.E. Krokan, F. Kirpekar, A. Klungland, P.O. Falnes, ALKBH8-mediated formation of a novel diastereomeric pair of wobble nucleosides in mammalian tRNA. Nat. Commun. 2 (2011) 172.
- [49] M. Kawakami, S. Takemura, T. Kondo, T. Fukami, T. Goto, Chemical structure of a new modified nucleoside located in the anticodon of Bombyx mori glycine tRNA2, J. Biochem. 104 (1988) 108–111.
- [50] V. Leihne, F. Kirpekar, C.B. Vagbo, E. van den Born, H.E. Krokan, P.E. Grini, T.J. Meza, P.O. Falnes, Roles of Trm9- and ALKBH8-like proteins in the formation of modified wobble uridines in Arabidopsis tRNA, Nucleic Acids Res. 39 (2011) 7688–7701.
- [51] G.R. Björk, K. Jacobsson, K. Nilsson, M.J. Johansson, A.S. Byström, O.P. Persson, A primordial tRNA modification required for the evolution of life?, EMBO J 20 (2001) 231–239.
- [52] B. Huang, J. Lu, A.S. Byström, A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2thiouridine in *Saccharomyces cerevisiae*, RNA 14 (2008) 2183–2194.
- [53] R. Zabel, C. Bar, C. Mehlgarten, R. Schaffrath, Yeast alpha-tubulin suppressor Ats1/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11, Mol. Microbiol. 69 (2008) 175–187.
- [54] Y.T. Chen, M.M. Hims, R.S. Shetty, J. Mull, L. Liu, M. Leyne, S.A. Slaugenhaupt, Loss of mouse Ikbkap, a subunit of elongator, leads to transcriptional deficits and embryonic lethality that can be rescued by human IKBKAP, Mol. Cell. Biol. 29 (2009) 736–744.